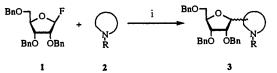
Coupling of ribofuranosyl fluoride and indoles

Masataka Yokoyama, **** Mitsuru Nomura, * Hideo Togo * and Hiroko Seki *

^a Department of Chemistry, Faculty of Science and ^b Chemical Analysis Center, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263, Japan

The coupling reaction of a D-ribofuranosyl fluoride with indoles in the presence of boron trifluoride gives the corresponding C-nucleosides in a stereoselective manner depending upon reaction temperatures and solvents: the β -anomer is preferred under such conditions as -15 to -40 °C in nitroethane while the α -anomer is preferred at -78 °C in propiononitrile.


Introduction

Our study directed toward C-nucleoside synthesis¹ has stimulated renewed interest in their straightward synthesis. In the synthesis of C-nucleosides, D-ribofuranosyl bromides or chlorides have been used as a general sugar donor. However, many careful treatments are required for them to undergo a clean reaction, due to their instability to moisture. On the other hand, D-ribofuranosyl fluorides are moisture-stable sugar donors and, therefore, one was chosen as a good candidate for the present study.

D-Glucopyranosyl fluorides have been utilized for the general glucosylation reaction in organic synthesis.² We found that tri-O-benzyl-D-ribofuranosyl fluoride could be coupled to indoles easily. This reaction shows that the electrophilic aromatic substitutions are performed on indoles. To our knowledge, the use of D-ribofuranosyl fluorides is rare in the synthesis of C-nucleosides. Therefore, we report herein this method as a simple and useful synthesis for C-nucleosides.

Results and discussion

The coupling reaction was carried out as following (Scheme 1).

Scheme 1 Coupling reaction of fluoride 1 with amines 2. Reagent: i, BF₃·OEt₂, solvent.

A solution of 2,3,5-tri-O-benzyl- β -D-ribofuranosyl fluoride 1 in dry organic solvents such as CH₂Cl₂, EtCN and EtNO₂ was allowed to react with indoles 2 in the presence of BF₃·OEt₂ at -78 to 0 °C. Although several Lewis acids such as SnCl₂, SnCl₄, TiCl₄, Yb(OTf)₃, trimethylsilyl trifluoromethanesulfonate (TMSOTf) and BF₃·OEt₂ were examined in the present reaction, the use of BF₃·OEt₂ gave the best results from preliminary experiments, and was therefore used in the present reactions. The preparation of compound 3 is summarized in Table 1.

In the case of 2-ethoxycarbonylindole **2b**, its NH group didn't require the protection, owing to the intramolecular hydrogen bond with the carbonyl group at the 2-position. In a comparison of runs 9 and 10, the yield decreased in run 10, perhaps because the hydrogen bond weakens at higher temperature, a suggestion which is supported by the variable-temperature NMR data shown in Table 2.

1-Phenylsulfonyl-7-azaindole was allowed to react with fluoride 1 to give the corresponding product 3 in 45% yield, while the use of 1-(*tert*-butyldimethylsilyl)-7-azaindole 2e

increased the yield of the corresponding product 3 (runs 18 and 19). Although 1-phenylsulfonylpyrazole didn't undergo this reaction at all, 1-benzyl-5-(trimethylsilyl)pyrazole 2g underwent this reaction in CH₂Cl₂ to give product 3g in 7% yield.

Solvent effect on stereoselectivity

In preliminary tests the reaction of fluoride 1 and phenylsulfonylindole 2a was performed in such organic solvents as CH_2Cl_2 , EtCN and $EtNO_2$. As a general tendency for the stereoselectivity of this reaction, α -selectivity increased according to the following order: $EtCN > EtNO_2 > CH_2Cl_2$ (runs 1, 3 and 7 in Table 1). In order to obtain the α -anomer of product 3a exclusively, the use of CH_2Cl_2 -EtCN (2.5%) solution at -78 °C gave the best result (use of EtCN alone gave exclusively the α -anomer, but only in 8% yield). This same tendency was also recognized in the reactions of indoles 2b and 2f. Therefore, indoles 2c and 2e was allowed to react in both EtCN and EtNO₂.

The predominance of the α -anomer product in the propiononitrile reaction may be attributable to its strong affinity for an intermediary oxocarbenium ion generated in this reaction.³

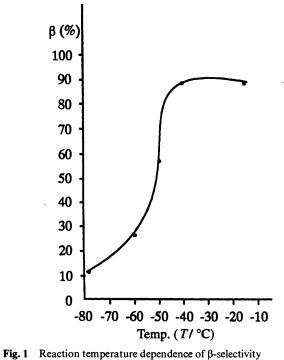
Temperature effect on stereoselectivity

As a general tendency of reaction temperature, high temperatures gave β -selectivity while low temperatures gave α -selectivity (runs 1 and 2; runs 7 and 8). An especially marked tendency of the reaction temperature was observed in the use of EtNO₂. The result is shown in Table 3 and Fig. 1.

Epimerization of product **3a** was then examined in EtNO₂ at -15 °C using BF₃·OEt₂. After treatment for 0.5 h, an α , β -mixture (91:9) of **3a** changed to a 9:91 mixture. The ratio 9:91 is the equilibrium ratio between α and β anomers at -15 °C. Therefore, the ΔG value at this temperature is estimated as 1.2 kcal mol⁻¹.† The epimerization is considered to take place as shown in Scheme 2.

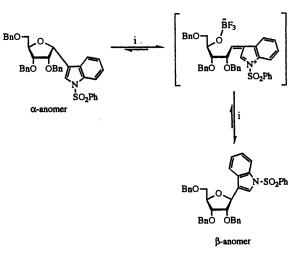
Judging from the above result, the α -anomer of compound **3a** is a kinetically controlled product and its β -anomer is a thermodynamically controlled product. This fact is supported by the heats of formation for the α and β anomers of **3a**, which were calculated by PM3 (MOL-MOLISTM version 2.2RO MOPAC version 6.10, Stewart): $\Delta H_{\rm f} = -46.6$ kcal mol⁻¹ for α -anomer and -49.7 kcal mol⁻¹ for β -anomer. Therefore, the β -anomers of products **3** could be obtained exclusively on treatment of compounds **3** with CF₃CO₂H (TFA) (Table 4).^{1d}

Structure determination


The α - and β -anomers of products 3 were determined by their coupling constants ($J_{1',2'}$ -values) and nuclear Overhauser enhancement (NOE) data from ¹H NMR spectroscopy (Table

 $\dagger 1 \text{ cal} = 4.184 \text{ J}.$

Table 1 Preparation of comp	pound 3
-----------------------------	---------


Indoles 2	Run	Solvent	Temp. (<i>T</i> /°C)	Time (t/h)	Yield (%)	α/β
<u></u>	1	CH ₂ Cl ₂	- 78	1.0	88	50/50
\mathbf{i}	2	CH_2Cl_2	-15	0.5	96	11/89
	3	EtCN	- 78	1.0	8	α
	4	EtCN	0	1.0	23	80/20
ŚO₂Ph	5	CH ₂ Cl ₂ -EtCN (0.5%)	- 78	1.0	82	80/20
-	6	CH_2Cl_2 -EtCN (2.5%)	- 78	1.0	72	91/9
2a	7	EtNO ₂	-78	1.0	79	84/16
	8	EtNO ₂	-40	0.5	99	9/91
	9	CH ³ Cl ³	78	1.0	41	21/79
	10	CH_2Cl_2	- 15	0.5	24	25/75
EtOC	11	EtCN	- 78	1.0	7	α
^Н 2b	12	EtNO ₂	-40	1.0	36	32/68
	13	EtCN	- 78	1.0	13	β β
Met	14	EtNO ₂	-15	0.5	48	β
Me 2c						
Me	15	CH ₂ Cl ₂	78	1.0	31	80/20
	16	EtCN	-78	1.0	20	50/50
Me 2d	17	EtNO ₂	-15	0.5	13	28/72
	18	EtCN	- 78	1.0	62 (92) ^a	74/26
K _N ∽N TBDMS 2e	19	EtNO ₂	-15	0.5	80	18/82
× NNN	20	CH ₂ Cl ₂	-78	1.0	80	19/81
SO ₂ Ph	21	EtCN	- 78	1.0	39	α
-	22	EtNO ₂	-40	0.5	83	15/85
2f		2				,
N.N TMS	23	CH ₂ Cl ₂	78	1.0	7	α
Bn 2g		2 2				

 \rightarrow : C-C bond-forming position. " Conversion yield.

2146 J. Chem. Soc., Perkin Trans. 1, 1996

Scheme 2 Epimerization of compound 3a. Reagent: i, BF₃.

5). Although the coupling constants for both anomers of compound 3f are very similar, the α -anomer lacks an NOE between 1'-H and 4'-H.

Deprotection

The phenylsulfonyl group of compounds 3 (3a and 3f) could be removed easily with potassium hydroxide in 1,4-dioxane

 Table 2
 Chemical shifts of NH at several temperatures

NH (ppm)		
95		
1		
23		
7		
8		
0		
5		
94		

Table 3 Yield and stereoselectivity of compound 3a at several temperatures^{*a*}

Temp. $(T/^{\circ}C)$	Yield (%)	α/β
-15	94	9/91
-40	99	9/91
-50	93	41/59
-60	96	71/29
-78	74	86/14
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

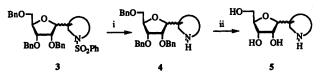

" Reaction conditions: EtNO₂, BF₃·OEt₂, 0.5 h.

Table 4Epimerization of compounds 3

Run	3	α/β^a	
1	3a	59/41→12/88	
2	3b	32/68→25/75	
3	3e ^b	74/26-→49/51	
4	3f	∝→22/78	

^a The ratios after treatment with TFA for 1 day at room temperature. ^b Desilylated product.

solution containing 18-crown-6⁴ to afford products 4 (Scheme 3). Debenzylation of compound 4a was carried out in the usual way using boron trichloride ⁵ to give compound 5a. The α and β anomers of compound 5a could be separated by recycling preparative HPLC.

Scheme 3 Deprotection of 3. Reagents: i, KOH, 18-crown-6; ii, BCl₃.

Experimental

Microanalyses were performed with a Perkin-Elmer 2400 elemental analyser at the Chemical Analysis Center of Chiba University. IR spectra were recorded on a Hitachi 215 spectrometer. Mass spectra were obtained on Hitachi M-60 and JEOL JMS-HX110 mass spectrometers. ¹H and ¹³C NMR spectra were measured [CDCl₃ as solvent (unless specified otherwise), using tetramethylsilane (TMS) as internal reference] with JEOL JNM-FX-270 and JNM-GSX-500 spectrometers. Chemical shifts are expressed in δ values; J values are given in Hz. 2D ¹H NMR (COSY and NOESY) data were measured with the JNM-GSX-500 spectrometer. Wakogel C-200 and C-300 was used for TLC, and Wakogel B-5F for preparative TLC (PLC). Recycling preparative HPLC was performed with a Japan Analytical Industry LC-908 instrument.

Materials

2,3,5-Tri-*O*-benzyl- β -D-ribofuranosyl fluoride 1,⁶ l-(phenylsul-fonyl)indole **2a**,⁷ and l-(phenylsulfonyl)pyrrole **2f**⁷ were prepared according to the literature.

Synthesis of C-nucleosides 3; typical procedure

To a solution of 2,3,5-tri-O-benzyl- β -D-ribofuranosyl fluoride 1 (50 mg, 0.12 mmol) and each aromatic heterocycle 2 (0.36 mmol) in dry CH₂Cl₂ (2 ml) was added BF₃·OEt₂ (0.1 ml, 0.84 mmol) at -78 °C. After being stirred for 1 h at the same temperature, the reaction mixture was treated with aq. NaHCO₃ (6 ml), extracted with CHCl₃, and the extract was dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified in the usual way using PLC on silica gel.

1-(tert-Butyldimethylsilyl)-7-azaindole 2e

To a solution of 7-azaindole (500 mg, 4.2 mmol) in dry THF (10 ml) was added BuLi (hexane solution; 5 mmol) dropwise and the mixture was stirred for 0.5 h at room temperature. To the resultant mixture was added *tert*-butyldimethysilyl chloride (770 mg) and the mixture was stirred for 1 day at room temperature before being treated with aq. NH₄Cl (10 ml), extracted with CHCl₃, and the extract dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography [eluent: hexane–ethyl acetate (4:1), $R_{\rm f}$ 0.8] (94%), oil, $v_{\rm max}$ (neat)/cm⁻¹ 2900, 1400, 1280, 1160 and 790; $\delta_{\rm H}$ (270 MHz) 0.63 (6 H, s, Me), 0.93 (9 H, s, Bu^r), 6.52 (1 H, d, $J_{2.3}$ 3.6, 3-H), 6.99–7.04 (1 H, m, 5-H), 7.23 (1 H, d, $J_{2.3}$ 3.6, 2-H), 7.85 (1 H, dd, $J_{4.5}$ 7.9, $J_{4.6}$ 1.7, 4-H) and 8.26 (1 H, dd, $J_{5.6}$ 4.6, $J_{4.6}$ 1.7, 6-H).

The following C-nucleorides were prepared.

1-Phenylsulfonyl-3-(2,3,5-tri-*O***-benzyl-D-ribofuranosyl)indole 3a.** Oil, $\nu_{max}(neat)/cm^{-1}$ 2820, 1440, 1360, 1170 and 730 [HRMS (FAB) Found: M⁺, 659.2271. Calc. for C₄₀H₃₇NO₆S: *M*, 659.2342]; $\delta_{\rm H}(500$ MHz) (α-anomer) 3.61 (1 H, dd, $J_{\rm gem}$ 10.7, $J_{4'.5'}$ 3.3, 5'-H), 3.76 (1 H, dd, $J_{\rm gem}$ 10.7, $J_{4'.5'}$ 2.8, 5'-H), 4.12–4.17 (2 H, m, 2'- and 3'-H), 4.28–4.62 (7 H, m, 4'-H and PhCH₂), 5.27 (1 H, d, $J_{1'.2'}$ 3.3, 1'-H), 6.87 (J 7.4, 2 H, d) and 7.04–8.01 (23 H, m, indole 2-, 4-, 5-, 6- and 7-H, SO₂Ph and Ph).

 $δ_{\rm H}(\beta$ -Anomer) 3.60 (1 H, dd, $J_{\rm gem}$ 10.5, $J_{4'.5'}$ 3.6, 5'-H), 3.70 (1 H, dd, $J_{\rm gem}$ 10.5, $J_{4'.5'}$ 3.6, 5'-H), 4.03 (1 H, dd, $J_{1'.2'}$ 6.6, $J_{2'.3'}$ 5.2, 2'-H), 4.08 (1 H, dd, $J_{2'.3'}$ 5.2, $J_{3'.4'}$ 4.1, 3'-H), 4.30– 4.66 (7 H, m, 4'-H and PhC H_2), 5.19 (1 H, d, $J_{1'.2'}$ 6.6, 1'-H) and 7.01–7.99 (25 H, m, indole 2-, 4-, 5-, 6- and 7-H, SO₂Ph and Ph); $δ_{\rm C}$ (125 MHz) 70.1 (C-5'), 72.2, 72.4 and 73.5 (benzyl CH₂), 77.1 (C-3'), 77.4 (C-2'), 81.2 (C-4'), 81.8 (C-1'), 113.5 (indole C-6 and -7), 120.9 (indole C-4), 121.8 (indole C-3), 123.2 (indole C-5), 124.1 (indole C-2), 124.7–128.4 (Ph), 128.7 (indole C-9), 129.2–133.7 (Ph), 135.5 (indole C-8) and 137.5–138.1 (Ph).

2-Ethoxycarbonyl-3-(2,3,5-tri-O-benzyl-D-ribofuranosyl)indole 3b. Oil, $v_{max}(neat)/cm^{-1}$ 3270, 2820, 1690, 1240, 1100 and 740 [HRMS (FAB) Found: (M + H)⁺, 592.2690. Calc. for C₃₇H₃₈NO₆: (M + H), 592.2699]; $\delta_{H}(500 \text{ MHz})$ (α -anomer) 1.35 (3 H, t, J 7.3, CH₃CH₂O), 3.68–3.86 (2 H, m, 5'-H₂), 4.28– 4.65 (11 H, m, 2'-, 3'- and 4'-H, CH₃CH₂O and PhCH₂O), 6.02 (1 H, d, J_{1'.2'} 2.8, I'-H), 6.71 (2 H, d, J 6.9, Ph), 7.04–7.33 (16 H, m, indole 5-, 6- and 7-H, and Ph), 8.17 (1 H, d, J_{4,5} 8.3, indole 4-H) and 8.76 (1 H, br s, indole 1-H).

 $δ_{\rm H}(\beta-\text{Anomer})$ 1.36 (3 H, t, J7.2, CH₃CH₂O), 3.72–3.86 (2 H, m, 5'-H₂), 4.27–4.79 (11 H, m, 2'-, 3'- and 4'-H, CH₃CH₂O and PhCH₂), 6.05 (1 H, d, $J_{1',2'}$ 6.3, 1'-H), 6.85–6.88 (1 H, m, indole 5-H), 7.06–7.36 (17 H, m, indole 6- and 7-H and Ph), 7.92 (1 H, d, $J_{4,5}$ 8.0, indole 4-H) and 8.89 (1 H, br s, indole 1-H).

1,2-Dimethyl-3-(2,3,5-tri-*O***-benzyl-D-ribofuranosyl)indole 3c.** Oil, $v_{max}(neat)/cm^{-1}$ 2850, 1440, 1360, 1130 and 740 [HRMS (FAB) Found: M⁺, 547.2724. Calc. for $C_{36}H_{37}NO_4$: *M*, 547.2723]; $\delta_{H}(500 \text{ MHz})$ (β -anomer) 2.39 (3 H, s, 2-CH₃), 3.63 (3 H, s, 1-CH₃), 3.66 (1 H, dd, J_{gem} 10.2, $J_{4',5'}$ 3.9, 5'-H), 3.72 (1 H, dd, J_{gem} 10.2, $J_{4',5'}$ 3.9, 5'-H), 4.11–4.15 (1 H, m, 3'-H), 4.26 (1 H, dd, $J_{3',4'}$ 7.7, $J_{4',5'}$ 3.9, 4'-H), 4.31 (1 H, dd, $J_{1',2'}$ 8.0, $J_{2',3'}$ 6.3, 2'-H), 4.36 (2 H, s, PhCH₂), 4.53–4.75 (4 H, m, PhCH₂), 5.21 (1 H, d, $J_{1',2'}$ 8.0, 1'-H), 6.89 (1 H, t, $J_{4,5} = J_{5,6} = 8.0$, indole 5-H), 7.03–7.37 (17 H, m, indole 6- and

J. Chem. Soc., Perkin Trans. 1, 1996 2147

Table 5	$J_{1',2'}$ -values and	NOE data of	compound 3
---------	-------------------------	-------------	------------

	α-Anomer		β-Anomer		
	<u></u>	NOE (%)	J _{1',2'} (Hz)	NOE (%)	
3	$J_{1',2'}$ (Hz)	Hz) $1'-H \Longrightarrow 2'-H$		l'-H === 2'-H	l'-H ← 4'-H
	3.3	7.1	6.6	1.6	2.0
3b	2.8	9.6	6.3	N.O."	8.6
3c			8.0	N.O."	8.7
3d	3.0	8.9	8.0	N.O.ª	3.2
Зе	3.3	5.9	6.9	3.4	3.8
3f	2.8	4.1	3.3	3.5	3.7

" N.O.: not observed.

7-H, and Ph) and 7.64 (1 H, d, indole 4-H, $J_{4.5}$ 8.0, indole 4-H).

1,3-Dimethyl-2-(2,3,5-tri-O-benzyl-D-ribofuranosyl)indole 3d. Oil, $v_{max}(neat)/cm^{-1}$ 2830, 1440, 1360, 1130 and 740 [HRMS (FAB) Found: M⁺, 547.2724]; $\delta_{H}(500 \text{ MHz})$ (α -anomer) 2.27 (3 H, s, 3-CH₃), 3.66–3.81 (2 H, m, 5'-H₂), 3.82 (3 H, s, 1-CH₃), 3.97 (1 H, d, J 11.8), 4.06–4.64 (8 H, m, 2'-, 3'- and 4'-H, and PhCH₂), 5.48 (d, 1 H, $J_{1'.2'}$ 3.0, 1'-H), 6.89 (2 H, d, J 7.2), 7.08–7.37 (16 H, m, indole 5-, 6- and 7-H, and Ph) and 7.54 (1 H, d, $J_{4,5}$ 7.7, indole 4-H).

 $δ_{\rm H}(β-Anomer) 2.36 (3 H, s, 3-CH_3), 3.59 (3 H, s, 1-CH_3), 3.61-3.70 (3 H, m, 4'-H and 5'-H_2), 4.10-4.79 (8 H, m, 2'- and 3'-H, PhCH₂), 5.32 (1 H, d, <math>J_{1',2'}$ 8.0, 1'-H), 6.98 (2 H, d, J 7.2), 7.08-7.37 (16 H, m, indole 5-, 6- and 7-H, and Ph) and 7.54 (1 H, d, $J_{4,5}$ 7.7, indole 4-H).

1-(tert-Butyldimethylsilyl)-3-(2,3,5-tri-O-benzyl-D-ribofur-

anosyl)-7-azaindole 3e. Oil, $v_{max}(neat)/cm^{-1}$ 2900, 1440, 1290, 1140 and 750 [HRMS (FAB) Found: $(M + H)^+$, 635.3309. Calc. for $C_{39}H_{47}N_2O_4Si$: (M + H), 635.3305]; $\delta_H(500 \text{ MHz})$ (α -anomer) 0.57 and 0.58 (3 H × 2, s × 2, Me), 0.91 (9 H, s, Bu'), 3.61–3.77 (2 H, m, 5'-H₂), 4.10–4.68 (9 H, m, 2'-, 3'- and 4'-H, and PhCH₂), 5.33 (1 H, d, $J_{1',2'}$ 3.3, 1'-H), 6.97 (1 H, dd, $J_{4.5}$ 7.9, $J_{5.6}$ 4.6, indole 5-H), 7.10–7.35 (16 H, m, indole 2-H and Ph), 7.97 (1 H, dd, $J_{4.5}$ 7.9, $J_{4.6}$ 1.6, indole 4-H) and 8.24 (1 H, dd, $J_{4.6}$ 1.6, $J_{5.6}$ 4.6, indole 6-H).

 $δ_{\rm H}$ (β-Anomer) 0.58 (3 H × 2, s × 2, Me), 0.91 (9 H, s, Bu'), 3.62 (1 H, dd, $J_{\rm gem}$ 10.4, $J_{4'.5'}$ 3.6, 5'-H), 3.72 (1 H, dd, $J_{\rm gem}$ 10.4, $J_{4'.5'}$ 3.9, 5'-H), 4.10–4.14 (2 H, m, 2'- and 3'-H), 4.32 (1 H, dd, $J_{3'.4'}$ 6.9, $J_{4'.5'}$ 3.6 (4'-H), 4.43, 4.49, 4.55, 4.60, 4.63 and 4.70 (1 H × 6, d × 6, benzyl-H, $J_{\rm gem}$ 12.1 PhCH₂), 5.21 (1 H, d, $J_{1'.2'}$ 6.9 1'-H), 6.80 (1 H, dd, $J_{4.5}$ 8.0, $J_{5.6}$ 4.7, indole 5-H), 7.08–7.36 (16 H, m, indole 2-H and Ph), 7.86 (1 H, dd, $J_{4.5}$ 8.0, $J_{4.6}$ 1.7, indole 4-H) and 8.21 (1 H, dd, $J_{4.6}$ 1.7, $J_{5.6}$ 4.7, indole 6-H); $δ_{\rm C}$ (125 MHz) – 4.3, 18.9 and 26.5 (TBDMS), 70.5 (C-5'), 72.0, 72.2 and 73.5 (benzyl CH₂), 77.5 (C-3'), 77.8 (C-2'), 81.1 (C-4'), 81.8 (C-1'), 114.8 (indole C-3), 115.6 (indole C-5), 120.5 (indole C-9), 127.6 (indole C-2), 127.6–128.4 (Ph), 129.4 (indole C-4), 137.8 and 138.1 (Ph), 142.5 (indole C-6) and 154.6 (indole C-8).

1-Phenylsulfonyl-2-(2,3,5-tri-O-benzyl-D-ribofuranosyl)pyr-

role 3f. Oil, $\nu_{max}(neat)/cm^{-1}$ 2870, 1740, 1360, 1150 and 740 [HRMS (FAB) Found: (M + H)⁺, 610.2263. Calc. for C₃₆H₃₆NO₆S: (M + H), 610.2263]; δ_H(500 MHz) (α-anomer) 3.56–4.71 (2'-, m, 11 H, 3'- and 4'-H, 5'-H₂, and PhCH₂), 5.39 (1 H, d, $J_{1',2'}$ 2.8 1'-H), 6.33 (1 H, dd, $J_{3,4}$ 3.2, $J_{4,5}$ 3.2 pyrrole 4-H), 6.59–6.61 (1 H, m, pyrrole 3-H) and 7.13–7.70 (21 H, m, pyrrole 5-H, SO₂Ph and Ph).

 $\delta_{\rm H}$ (β-Anomer) 3.56 (1 H, dd, $J_{\rm gem}$ 7.3, $J_{4'.5'}$ 3.9, 5'-H), 3.57 (1 H, dd, $J_{\rm gem}$ 7.3, $J_{4'.5'}$ 3.0, 5'-H), 4.08–4.27 (3 H, m, 2'-, 3'- and 4'-H), 4.41–4.71 (6 H, m, PhC H_2), 5.42 (1 H, d, $J_{1'.2'}$ 3.3, 1'-H), 6.16 (1 H, dd, $J_{3.4} = J_{4.5} = 3.4$, pyrrole 4-H, 1 H, dd), 6.42–6.44 (1 H, m, pyrrole 3-H), 7.17–7.33 (16 H, m, pyrrole 5-H and Ph), 7.36–7.41 (3 H, m, SO₂Ph *m*, *p*-H) and 7.80 (2 H, dd, J_1 1.0, J_2 7.3, SO₂Ph *o*-H); $\delta_{\rm C}$ (125 MHz) 69.2 (C-5'), 72.3, 73.3 (benzyl

 CH_2), 76.9 (C-3'), 77.4 (C-2'), 79.8 (C-4'), 80.8 (C-1'), 112.0–123.6 (pyrrole C-3, -4 and -5), 126.9–129.3 (Ph), 134.0 (pyrrole C-2) and 137.9–139.1 (Ph).

1-Benzyl-3-(2,3,5-tri-*O***-benzyl-D-ribofuranosyl)-5-(trimethyl-silyl)pyrazole 3g.** Oil, v_{max} (neat)/cm⁻¹ 2900, 1420, 1100 and 700; $\delta_{\rm H}$ (270 MHz) (α-anomer) 0.07, 0.09 and 0.20 (3 H × 3, s × 3, SiMe₃), 3.54–3.72 (2 H, m, 5'-H), 4.01–4.60 (9 H, m, 2'-, 3'- and 4'-H and PhCH₂O), 5.09 (1 H, d, $J_{1',2'}$ 3.9, 1'-H), 5.45 (2 H, s, NCH₂Ph), 6.44 (1 H, d, J 1.6, 4-H) and 6.91–7.59 (20 H, m, Ph).

Deprotection

3-(2,3,5-Tri-O-benzyl-D-ribofuranosyl)indole 4a. A mixture of compound **3a** (131.8 mg, 0.2 mmol), 18-crown-6 (52.8 mg, 0.2 mmol), KOH (1.0 g, 17.9 mmol), methanol (2 ml) and 1,4-dioxane (2 ml) was stirred for 1 h at room temperature. The resulting mixture was treated with 1 mmole HCl (15 ml), extracted with CH₂Cl₂, and the extract was dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by PLC on silica gel [developer hexane–ethyl acetate (4:1); $R_{\rm f}$ 0.3] (81%), oil, $\nu_{\rm max}$ (neat)/cm⁻¹ 3250, 2800, 1420 and 1060 [HRMS (FAB) Found: M⁺, 519.2388; C, 78.9; H, 6.4; N, 3.0% Calc. for C₃₄H₃₃NO₄: M, 519.2410, C, 78.59; H, 6.40; N, 2.70%]; $\delta_{\rm H}$ (500 MHz) (α -anomer) 3.64–4.69 (11 H, m, 2'-, 3'- and 4'-H, 5'-H₂ and PhCH₂), 5.45 (1 H, d, $J_{1'.2'}$ 3.4, 1'-H), 6.97–7.65 (20 H, m, indole 2-, 4-, 5-, 6- and 7-H, and Ph) and 8.16 (1 H, br s, indole 1-H).

 $δ_{\rm H}$ (β-Anomer) 3.66 (1 H, dd, $J_{\rm gem}$ 10.5, $J_{4'.5'}$ 3.6, 5'-H), 3.75 (1 H, dd, $J_{\rm gem}$ 10.5, $J_{4'.5'}$ 3.9), 4.11–4.35 (3 H, m, 2'-, 3'- and 4'-H), 4.53–4.69 (6 H, m, PhC H_2), 5.33 (1 H, d, $J_{1'.2'}$ 6.3, 1'-H, 5'-H), 6.99 (1 H, dd, $J_{4.5}$ 8.0, $J_{5.6}$ 0.8 indole 5-H), 7.15–7.36 (18 H, m, indole 2-, 6- and 7-H and Ph), 7.65 (1 H, d, $J_{4.5}$ 8.0, indole 4-H) and 8.02 (1 H, br s, indole 1-H).

2-(2,3,5-Tri-O-benzyl-D-ribofuranosyl)pyrrole 4f. Desulfonylation of compound **3f** was carried out by the same method as described for its analogue **3a**. Compound **4f** was obtained as an oil, $v_{max}(neat)/cm^{-1}$ 3260, 2840, 1440, 1100 [HRMS (FAB) Found: (M + H)⁺, 470.2336. Calc. for C₃₀H₃₂NO₄: (M + H), 470.2331] (Found: C, 76.6; H, 6.6; N, 3.2. Calc. for C₃₀H₃₁NO₄: C, 76.73; H, 6.65; N, 2.98%); $\delta_{H}(500 \text{ MHz})$ (α -anomer) 3.69 (1 H, dd, J_{gem} 10.2, $J_{4'.5'}$ 1.7, 5'-H), 3.98 (1 H, dd, J_{gem} 10.2, $J_{4'.5'}$ 2.1, 5'-H), 3.93–4.76 (9 H, m, 2'-, 3'- and 4'-H, and PhCH₂), 5.22 (1 H, d, $J_{1'.2'}$ 2.0, 1'-H), 5.89–6.05 (3 H, m, pyrrole 3-, 4- and 5-H), 7.15–7.38 (15 H, m, Ph) and 9.42 (1 H, br s, pyrrole 1-H).

 $\delta_{\rm H}(\beta$ -Anomer) 3.51 (1 H, dd, $J_{\rm gem}$ 10.1, $J_{4',5'}$ 3.3, 5'-H), 3.60 (1 H, dd, $J_{\rm gem}$ 10.1, $J_{4',5'}$ 3.4, 5'-H), 3.93–4.76 (9 H, m, 2'-, 3'- and 4'-H, and PhC H_2), 5.18 (1 H, d, $J_{1',2'}$ 4.6 1'-H), 6.05–6.19 (3 H, m, pyrrole 3-, 4- and 5-H), 7.15–7.38 (15 H, m, Ph) and 9.29 (1 H, br s, pyrrole 1-H).

3-(D-Ribofuranosyl)indole 5a. To a solution of compound **4a** (88.2 mg, 0.17 mmol) in CH_2Cl_2 (20 ml) was added dropwise a solution of 1 M BCl₃ in CH_2Cl_2 (0.8 ml, 0.8 mmol) at -78 °C. After being stirred for 1 h at the same temperature, the mixture

was added to dry MeOH–CH₂Cl₂ (1:1; 8 ml) and then neutralized with powdered NaHCO₃ at room temperature. The resulting mixture was filtered, and washed with dry methanol. The combined filtrate and washings were condensed, and purified by PLC on silica gel [developer CHCl₃–MeOH (9:1); $R_{\rm f}$ 0.2] (42%); $\delta_{\rm H}$ (270 MHz; CDCl₃–CD₃OD) (α -anomer) 3.25– 4.28 (8 H, m, 2'-, 3'- and 4'-H, 5'-H₂ and 2'-, 3'-, and 5'-OH), 5.05 (1 H, d, $J_{1'.2'}$ 6.0, 1'-H), 7.05–7.37 (4 H, m, indole 2-, 5-, 6and 7-H), 7.68 (1 H, d, $J_{4.5}$ 7.7, indole 4-H) and 9.46 (1 H, br s, indole 1-H).

 $\delta_{\rm H}$ (β-Anomer) 3.25–4.28 (8 H, m, 2'-, 3'- and 4'-H, 5'-H₂, and 2'-, 3'- and 5'-OH), 4.80 (1 H, d, $J_{1',2'}$, 9, 1'-H), 7.05–7.37 (4 H, m, indole 2-, 5-, 6- and 7-H), 7.61 (1 H, d, $J_{4,5}$, 8.0, indole 4-H) and 9.54 (1 H, br s, indole 1-H). Each anomer was separated from a mixture of α- and β-anomers by HPLC [column: JAIGEL GS-320 (20 mm $\varphi \times 500$ mm); eluent: MeOH; cycle: 12 times].

Acknowledgements

This work was supported by a Grant-in-Aid No.07554085 for Scientific Research from the Ministry of Education, Science and Culture, Japan. We thank Dr T. Watanabe (Faculty of Pharmaceutical Science, Chiba University) for the gift of indoles.

References

(a) H. Togo, M. Aoki and M. Yokoyama, *Tetrahedron Lett.*, 1991, 32, 6559; (b) H. Togo, S. Ishigami and M. Yokoyama, *Chem. Lett.*, 1992, 1673; (c) H. Togo, M. Aoki, T. Kuramochi and M. Yokoyama, *J. Chem. Soc.*, *Perkin Trans.* 1, 1993, 2417; (d) M. Yokoyama, T. Tanabe, A. Toyoshima and H. Togo, *Synthesis*, 1993, 517; (e) M.

Yokoyama, A. Toyoshima, T. Akiba and H. Togo, Chem. Lett., 1994, 265; S. Ishigami, H. Togo and M. Yokoyama, J. Chem. Soc., Perkin Trans. 1, 1994, 2407; H. Togo, S. Ishigami, M. Fujii, T. Ikuma and M. Yokoyama, J. Chem. Soc., Perkin Trans. 1, 1994, 2931; M. Yokoyama, T. Akiba and H. Togo, Synthesis, 1995, 638; M. Yokoyama, M. Nomura, T. Tanabe and H. Togo, Heteroatom Chem., 1995, 6, 189.

- T. Mukaiyama, Y. Murai and S. Shoda, Chem. Lett., 1981, 431;
 S. Hashimoto, M. Hayashi and R. Noyori, Tetrahedron Lett., 1984,
 25, 1379; T. Matsumoto, M. Katsuki, H. Jona and K. Suzuki, J. Am. Chem. Soc., 1991, 113, 6982; M. Chemielewski, J. N. BeMiller and D. P. Cerretti, Carbohydr. Res., 1981, 97, C1; G. Grynkiewicz and J. N. BeMiller, Carbohydr. Res., 1982, 108, 229; K. C. Nicolaou, R. E. Dolle, A. Chucholowski and J. L. Randall, J. Chem. Soc., Chem. Commun., 1984, 1153; K. C. Nicolaou, A. Chucholowski, R. E. Dolle and J. L. Randall, J. Chem. Soc., Chem. Commun., 1984, 1155;
 R. B. Myers and Y. C. Lee, Carbohydr. Res., 1984, 132, 61; Y. Araki, N. Kobayashi and Y. Ishido Carbohydr. Res., 1987, 171, 125; T. Matsumoto, M. Katsuki and K. Suzuki, Tetrahedron Lett., 1989, 30, 833; K. N. Drew and P. H. Gross, J. Org. Chem., 1991, 56, 509; D. E. Levy and C. Tang, The Chemistry of C-Glycosides, Tetrahedron Organic Series, Pergamon Elsevier, New York, 1995, vol. 13, pp. 178, 184, 185.
- 3 R. R. Schmidt, M. Behrendt and A. Toepfer, Synlett, 1990, 694.
- 4 J. Rokach, P. Hamel, M. Kakushima and G. M. Smith, Tetrahedron
- Lett., 1981, 22, 4901. 5 L. Hsu, D. S. Wise, L. S. Kucera, J. C. Drach and L. B. Townsend, J. Org. Chem., 1992, 57, 3354.
- 6 G. H. Posner and S. R. Haines, *Tetrahedron Lett.*, 1985, 26, 5; T. Mukaiyama, Y. Hashimoto and S. Shoda, *Chem. Lett.*, 1983, 935.
- 7 E. P. Papadopoulos and N. F. Haidar, Tetrahedron Lett., 1968, 1721.

Paper 6/02020H Received 22nd March 1996 Accepted 21st May 1996